Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
IEEE Trans Biomed Circuits Syst ; 13(6): 1625-1634, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31545741

RESUMEN

Large-scale in vivo electrophysiology requires tools that enable simultaneous recording of multiple brain regions at single-neuron level. This calls for the design of more compact neural probes that offer even larger arrays of addressable sites and high channel counts. With this aim, we present in this paper a quad-shank approach to integrate as many as 5,120 sites on a single probe. Compact fully-differential recording channels were designed using a single-gain-stage neural amplifier with a 14-bit ADC, achieving a mean input-referred noise of 7.44 µVrms in the action-potential band and 7.65 µVrms in the local-field-potential band, a mean total harmonic distortion of 0.17% at 1 kHz and a mean input-referred offset of 169 µV. The probe base incorporates 384 channels with on-chip power management, reference-voltage generation and digital control, thus achieving the highest level of integration in a neural probe and excellent channel-to-channel uniformity. Therefore, no calibration or external circuitry are required to achieve the above-mentioned performance. With a total area of 2.2 × 8.67 mm2 and a power consumption of 36.5 mW, the presented probe enables full-system miniaturization for acute or chronic use in small rodents.


Asunto(s)
Neuronas/fisiología , Potenciales de Acción , Amplificadores Electrónicos , Conversión Analogo-Digital , Animales , Electrodos Implantados , Fenómenos Electrofisiológicos , Diseño de Equipo , Humanos , Miniaturización
2.
Sensors (Basel) ; 18(11)2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30380709

RESUMEN

This paper presents an in-situ storage topology for ultra-high-speed burst mode imagers, enabling low noise operation while keeping a high frame depth. The proposed pixel architecture contains a 4T pinned photodiode, a correlated double sampling (CDS) amplification stage, and an in-situ memory bank. Focusing on the sampling noise, the system level trade-off of the proposed pixel architecture is discussed, showing its advantages on the noise, power, and scaling capability. Integrated with an AC coupling CDS stage, the amplification is obtained by exploiting the strong capacitance to the voltage relation of a single NMOS transistor. A comprehensive noise model is developed for optimizing the trade-off between the area and noise. As a proof-of-concept, a prototype imager with a 30 µm pixel pitch was fabricated in a CMOS 130 nm technology. A 108-cell memory bank is implemented allowing dense layout and parallel readout. Two types of CDS amplification stages were investigated. Despite the limited memory capacitance of 10 fF/cell, the photon transfer curves of both pixel types were measured over different operation speeds up to 20 Mfps showing a noise performance of 8.4 e-.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...